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Abstract 

NASA’s Black Marble nighttime lights product suite (VNP46) is available at 500 m resolution 

since January 2012 with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) 

Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The 

retrieval algorithm, developed and implemented for routine processing at NASA’s Land Science 

Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, 

terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime 

lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: 

(1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector 

radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for 

atmospheric and BRDF effects; (3) geometric-optical and canopy radiative transfer modeling to 

account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. 

Extensive benchmark tests at representative spatial and temporal scales were conducted on the 

VNP46 time series record to characterize the uncertainties stemming from upstream data sources. 

Initial validation results are presented together with example case studies illustrating the scientific 

utility of the products. This includes an evaluation of temporal patterns of NTL dynamics 

associated with urbanization, socioeconomic variability, cultural characteristics, and settlements 

for displaced populations affected by conflict. Current and planned activities, under the Group on 

Earth Observations Human Planet Initiative, are aimed at evaluating the products at different 

geographic locations and time periods representing the full range of retrieval conditions. 
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1. INTRODUCTION 

1.1.Science/Applications Rationale for the Product 

The Day/Night Band (DNB) sensors of the Visible Infrared Imaging Radiometer Suite (VIIRS), 

on board the Suomi-National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite System 

(JPSS) satellite platforms, provide global daily measurements of nocturnal visible and near-

infrared (NIR) light that are suitable for earth system science and applications studies. Since the 

launch of the S-NPP satellite in 2011, multiple studies have used the VIIRS DNB as primary data 

source covering a wide range of topics such as: (1) feature extraction techniques, based on manual 

or semi-automated interpretation of the underlying VIIRS DNB radiances, to detect severe weather 

impacts to urban infrastructure (Cao et al., 2013; Cole et al., 2017; Mann et al., 2016; Molthan and 

Jedlovec, 2013); (2)  detection of sub-pixel scale features, e.g., fires (Polivka et al., 2016), shipping 

vessels (Asanuma et al., 2016; Elvidge et al., 2015a; Straka et al., 2015), lightning flashes (Bankert 

et al., 2011), surface oil slicks (Hu et al., 2015), and gas flares (Elvidge et al., 2015b; Liu et al., 

2017); and (3) techniques for monitoring nighttime atmospheric optical properties; including 

clouds (Minnis et al., 2016; Walther et al., 2013), aerosols (Johnson et al., 2013; McHardy et al., 

2015), particulate matter (Wang et al., 2016), and gravity waves in the upper atmosphere via 

nightglow (Miller et al., 2015). Moreover, as with early research that utilized the Defense 

Meteorological Satellite Program’s Operational Line Scanner (DMSP/OLS) (Huang et al., 2014), 

recent studies using the VIIRS DNB have employed statistical analyses and correlation discovery 

methods to confirm established empirical relationships with a wide range of human-linked patterns 

and processes. These include socioeconomic variables (Chen and Nordhaus, 2015; Chen et al., 

2015; Levin and Zhang, 2017; Li et al., 2013; Ma et al., 2014; Shi et al., 2014; Yu et al., 2015), as 

well as changes driven by urban built-up expansion (Guo et al., 2015; Sharma et al., 2016; Shi et 

al., 2014), energy use (Coscieme et al., 2014; Román and Stokes, 2015), and carbon emissions 

(Oda et al., 2017; Ou et al., 2015). 

In order to make timely and quantitative use of nighttime lights (NTL), one must first quantify the 

subset of variations that are correlated to human-linked patterns and processes from those that are 

not. This requirement is especially true for products derived from the VIIRS DNB, given its ultra-

sensitivity in low-lit conditions, and the resulting influence of extraneous light emission sources 

on the NTL time series record. Such artifacts can lead to discrepancies, e.g., when using moon-
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free NTL composites as proxies to regional-scale socioeconomic features (Bickenbach et al., 2016; 

Chen and Nordhaus, 2015). To resolve retrieval uncertainties and measurement errors, the quality 

assurance of NTL products also needs to be emphasized, e.g., by encouraging usage of quality 

flags that indicate the reliability of individual pixel values, or if retrievals are possibly affected by 

extraneous artifacts. More broadly, a meta-analysis of 132 research articles revealed the need to 

better trace the quality and provenance of NTL products as one of the most pressing areas of focus 

for future studies (Huang et al., 2014). 

There is also a need to characterize uncertainties stemming from angular, diurnal, and seasonal 

variations in atmospheric and surface optical properties. This is crucial since, as we will present in 

this document, NTL cannot be constrained directly from at-sensor top-of-atmosphere (TOA) 

radiances in part because of: (1) environmental factors, such as moon light, aerosols, and surface 

albedo whose reflectance contributes to the observed signal, and (2) errors stemming from seasonal 

variations and associated surface properties, which can significantly affect estimates of long-term 

trends. While it is generally neither desirable nor practical to delay the applied use of NTL products 

until they are proven to be error-free, or until known sources of error have been removed by 

product reprocessing, it is important to note that space agencies, coordinated by the Committee of 

Earth Observation Satellites (CEOS), place strong emphasis on product accuracy and performance. 

This information is needed by decision makers so they can trust the accuracy of the derived 

products, and by the science community, both to identify poorly performing products and 

opportunities for improvements, and to draw meaningful inferences from the long-term product 

records as they relate to trends in human settlements and urbanization. 

There is increasing agreement in the growing body of literature concerning factors that govern the 

utilization of the VIIRS DNB for long-term analyses and near-real time applications. Recent 

studies have introduced a number of quantitative remote sensing techniques, including: (1) terrain-

correction and trending of the VIIRS DNB geolocation (Wolfe et al., 2013); (2) establishing the 

calibration performance of the VIIRS DNB High Gain Stage (HGS), both in absolute terms and 

relative to future VIIRS flight units (Lee et al., 2015; Liao et al., 2013; Xiong et al., 2014; Zhang 

et al., 2016); (3) determining the effective spatial resolution and the impacts of spatial sampling 

on the VIIRS instrument and higher-level (Level 3) gridded products (Campagnolo et al., 2016; 

Pahlevan et al., 2017); (4) predicting the DNB’s geometric characteristics (i.e., time-varying 
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Sun/Earth/Moon geometry, moon-illuminated fraction, phase, and albedo) (Miller et al., 2012); (5) 

estimating the highly variable TOA lunar spectral irradiance (Miller and Turner, 2009); (6) 

correcting for surface Bidirectional Reflectance Distribution Function (BRDF) effects caused by 

varying illumination conditions – namely moonlight and reflected airglow from the Earth’s upper 

atmosphere (Cao et al., 2013; Cao and Bai, 2014; Román and Stokes, 2015); and (7) assessing 

seasonal biases caused by sensor-specific stray light (Lee et al., 2015; Liao et al., 2013; Mills and 

Miller, 2016), as well as other biogeophysical processes, such as vegetation (Levin, 2017; Levin 

and Zhang, 2017) and snow cover (Bennett and Smith, 2017). 

Despite this progress, substantial gaps remain in the quantification and documentation of 

uncertainty for NTL data and products. Such information is required by many users, such as the 

Land Product Validation (LPV) subgroup of the CEOS Working Group on Calibration and 

Validation (CEOS-WGCV) (Baret et al., 2009; Morisette et al., 2006; Wickland et al., 2014). This 

development is particularly relevant if these products are to be used to establish global metrics and 

indicators for achieving a myriad of goals identified under the United Nations Agenda 2030 for 

Sustainable Development (Griggs et al., 2015). These sustainable development goals (SDGs) 

include: (1) addressing the needs of conflict-affected populations (SDG-1); (2) quantifying the 

effectiveness of local electrification projects in the developing world (SDG-7); (3) building 

resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation; 

and (4) ensuring that cities and human settlements are inclusive, safe, resilient, and sustainable 

(SDG-11). While the current Joint Polar Satellite System (JPSS) requirements establish 

performance metrics for the VIIRS DNB calibration and sensor characteristics, the current DNB-

associated key performance requirements are tied strictly to nighttime imagery for short-term 

operational weather applications at high latitudes (Hillger et al., 2013). Whereas these formalized 

performance metrics correspond to the “Threshold” requirements of Table 1, the “Breakthrough” 

and “Goal” values point to 1-2 orders of magnitude improvement in sensitivity and spatial 

resolution. Here, “Threshold” is defined as the minimum requirement to be met to ensure that NTL 

time series data are useful, and is based on the current JPSS on-orbit performance requirements 

for the VIIRS DNB’s High Gain Stage (HGS) calibration (Liao et al., 2013). The “Goal” is an 

envisioned ideal requirement above which further improvements are not necessary to achieve all 

the science and applications underpinning global NTL data products. The “Breakthrough” is an 

intermediate level between “Threshold” and “Goal”, which, if achieved, would result in a 
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significant improvement  (WMO, 2016). Lmin is the minimum detectable NTL radiance and L0 is 

the robustness or uncertainty (standard deviation) with respect to Lmin. All values in Table 1 pertain 

to Land-based NTL detections. 

Table 1  Key performance metrics established for NASA’s Black Marble product suite. 

Key Performance Metrics Threshold Breakthrough Goal 

NTL Detection Limit (Lmin) 3.0 nW·cm-2·sr-1 0.5 nW·cm-2·sr-1 0.25 nW·cm-2·sr-1 

NTL Robustness (L0) ± 3.0 nW·cm-2·sr-1 ± 0.10 nW·cm-2·sr-1 ± 0.05 nW·cm-2·sr-1 

Stray Light Error 0.45 nW·cm-2·sr-1 0.25 nW·cm-2·sr-1 < 0.1 nW·cm-2·sr-1 

Spatial Resolution 742 m (±5%) 500 m (±5%) ≤ 200 m (±5%) 

Temporal Resolution Monthly Daily Hourly 

Geolocation Uncertainty 133 m 50 m 20 m 

 

1.2. Intended User Community 

The communities, who have been using the Black Mable product, include, but are not limited to: 

 Disaster risk reduction 

 Urban land cover/land use change and sustainability 

 Socioeconomic factors and demographic changes 

 Regional conflict monitoring 

 Global and regional climate modeling communities 

 Ocean ecosystems and sustainable fisheries 

 Light pollution studies 

2. THE ALGORITHM 

2.1. Algorithm Description 

The operational NASA Black Marble product suite (VNP46) ingests multiple source datasets and 

ancillary data to output the highest quality pixel-based estimates of NTL. These NTL estimates 

are accompanied by pixel-level quality flags. The principal features of the algorithm are illustrated 

in Figure 2, and are summarized in the following sections. 
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2.1.1. Atmospheric Correction 

NASA’s Black Marble retrieval strategy combines daytime VIIRS DNB surface reflectance, 

Bidirectional Reflectance Distribution Function (BRDF), Surface Albedo, Nadir BRDF-Adjusted 

Reflectance (NBAR), and Lunar irradiance values to minimize the biases caused by extraneous 

artifacts in the VIIRS NTL time series record. 

 

Figure 1 Overview of NASA’s Black Marble retrieval strategy (cf., Equation 1). During the ~50% 

portion of the lunar cycle when moonlight is present at the time of satellite observation, the surface 

upward radiance from artificial light emissions, LNTL [units of nWatts·cm-2·sr-1], can be extracted 

from at-sensor nighttime radiances at TOA, LDNB. Lpath is the nighttime path radiance, a(m) is the 

VIIRS-derived actual surface albedo. The atmospheric backscatter is given by a. T(,v) and 

T(,v) are the total transmittances along the lunar-ground and ground-sensor paths (respectively). 

P(v) is the probability of the upward transmission of NTL emissions through the urban vegetation 

canopy. Additional factors accounted for in the Level 1 process (Section 3.1) include correction 

for straylight and South Atlantic Anomaly (SAA) hits. 

Using this novel “turning off the Moon” approach, illustrated in Figure 1, the surface upward 

radiance from artificial light emissions, LNTL [units of nWatts·cm-2·sr-1], can be extracted from at-

sensor nighttime radiances at TOA, LDNB, using the following equation: 
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where Lpath is the nighttime path radiance (i.e., the radiance generated by scattering within the 

atmosphere), and a(m) is the VIIRS-derived actual (or Blue-Sky) surface albedo; incorporating 

the directional influence of sky radiance and multiple scattering effects between the ground and 

the atmosphere (Román et al., 2010). For the latter, a separate snow albedo retrieval scheme is 

used if the VIIRS current day snow status flag is activated (Klein and Stroeve, 2002; Y. Liu et al., 

2017; Moustafa et al., 2017; Wang et al., 2012). P(v) is defined in Equation 10 (see Section 2.3 

for details). The atmospheric backscatter is given by a , and T(,v) and T(,v) are the total 

transmittances (including direct and diffuse radiation) along the lunar-ground and ground-sensor 

paths (respectively). The latter two are a function of view-illumination geometry and the total 

atmospheric column optical depth ( ) due to mixed gases, water vapor, and aerosol particles. The 

retrieval uses a modified algorithm based on the heritage VIIRS Surface Reflectance Intermediate 

Product (IP) to estimate the values of Lpath, a, T(,v), and T(,v) for a given set of surface and 

atmospheric conditions (Roger et al., 2016; Skakun et al., 2018). Additional input datasets include 

the standard VIIRS Cloud Mask (VCM) (Kopp et al., 2014), atmospheric profiles obtained from 

National Centers for Environmental Prediction (NCEP) model inputs (i.e., water vapor, ozone, and 

surface pressure) (Moorthi et al., 2001), and the VIIRS aerosol model combined with daytime-to-

daytime averaged Aerosol Optical Depth (AOD 0.550m) to extrapolate the nighttime AOD 

(Vermote et al., 2014). 

2.1.2. BRDF Correction 

The surface Bidirectional Reflectance Distribution Function (BRDF, or reflectance anisotropy) is 

governed by the angle and intensity of illumination – whether that illumination be solar or lunar 

or from airglow emissions – and by the structural complexity of the surface, resulting in variations 

in brightly illuminated regions and darkly shadowed areas. The semi-empirical RossThick-

LiSparse Reciprocal (RTLSR, or Ross-Li) BRDF model (Román et al., 2010; Roujean et al., 1992; 

Schaaf et al., 2011a, 2002; Strahler et al., 1999) is advantageous in this regard, since (1) it is the 

most likely kernel-driven combination to capture the wide range of conditions affecting the VIIRS 

DNB on a global basis; (2) it allows analytical model inversion with a pixel-specific estimate of 
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uncertainty in the model parameters and linear combinations thereof (Lucht and Roujean, 2000); 

and (3) the scheme is flexible enough that other kernels can be easily adopted should any become 

available and should they be shown to be superior for a particular scenario. 

For VIIRS DNB acquisitions over snow-free and snow-covered surfaces, we define the spectral 

radiance contribution from moonlight, Lm, 
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Here, we define the wavelength for the narrowband instrument of interest as the weighted center, 

Λ, of the VIIRS DNB spectral band [0.5 - 0.9 m]. Parameter fiso() is the isotropic scattering 

component and equal to the bidirectional reflectance for a pixel viewing zenith angle v = 0 and a 

lunar zenith angle m = 0. Parameter fgeo() is the coefficient of the LiSparse-Reciprocal geometric 

scattering kernel Kgeo, derived for a sparse ensemble of surface casting shadows on a Lambertian 

 sorvxP xx  ;tantan 5 
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background (Li and Strahler, 1992). Parameter fvol() is the coefficient for the RossThick volume 

scattering kernel Kvol, so called for its assumption of a dense leaf canopy (Ross, 1981).  is the 

relative view-sun azimuth angle ( = m - v) and  is the scattering phase angle between moon 

and view directions. The two constants, dimensionless crown relative height (P4 = h / b) and shape 

(P5 = b / r) parameters, have been fixed at h / b = 2 and b / r =1 to invert the angular radiance data 

from the VIIRS DNB (Wanner et al. 1997). For these two parameters, h is the variable for height 

at which a crown center is located, b is the vertical half axis of the modeled ellipsoid, and r is its 

horizontal radius. Em () [units of nW·m-2] is the downwelling TOA sensor response function-

weighted lunar irradiance (Miller and Turner, 2009), and BRF is the surface bidirectional 

reflectance factor – the ratio of the BRDF to that of a perfect Lambertian reflector (i.e., BRF  

BRDF) (Nicodemus, 1977; Schaepman-Strub et al., 2006). 

To achieve a high-quality BRDF retrieval, the NASA Black Marble algorithm collects all available 

daytime, atmospherically-corrected, VIIRS DNB BRFs over a multi-date period (normally 16-

days) to establish the analytical solution for the Ross-Li BRDF model parameter values, fk(). 

Note that during moon-free nights when atmospheric air glow is the dominant emission source, 

the VNP46 algorithm sets the illumination geometry to near-nadir (m = 10) and the Lunar 

Irradiance to Em () = 0.52 nW·m-2 (Liao et al., 2013). This enables a BRDF correction even in 

the absence of moonlight. 

2.1.3. Seasonal Vegetation Correction 

Another known source of uncertainty in the retrieval of satellite-derived NTL is the influence of 

canopy-level foliage along the ground-to-sensor geometry path (Román and Stokes, 2015). This 

effect, which has been shown to reduce the magnitude of NTL at city-wide scales (Levin, 2017; 

Levin and Zhang, 2017), is most pronounced in temperate urban regions; where mixed and 

deciduous vegetation are most pervasive. Given its seasonal dependence, this occlusion effect 

(obscuration of surface light by foliage) should be proportional in magnitude to the density and 

vertical distribution pattern of leaves within a given VIIRS DNB pixel. Hence, while the effect 

may be non-linear (due to the confluence of factors that control the seasonality, physiognomy, and 

vertical distribution of urban vegetation canopies), the effect can be parameterized using analytical 

models which aim to retrieve canopy structure parameters from multi-angle remote sensing data 

(Chopping, 2006). With this concept in mind, we are employing a vegetation dispersion parameter, 
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known as the clumping index, , to parameterize the confined distribution of foliage within distinct 

canopy structures (Chen et al., 2005; Chen and Black, 1991; Leblanc et al., 2005; Nilson, 1971): 

  𝑃↑(𝜃𝑣) = 𝑒
−𝜓𝐺(𝜃𝑣)𝐿𝐴𝐼

𝑐𝑜𝑠(𝜃𝑣)
⁄

                                 (10) 

Here, P(v) is the probability of the upward transmission of NTL emissions through the urban 

vegetation canopy (known as the gap fraction probability and hereafter termed the Pgap equation), 

G(v) is the extinction coefficient that expresses the mean area projection of plant elements in the 

direction v (being 0.5 for canopies with a random distribution of leaf angles), and LAI is the Leaf 

Area Index. If LAI = 0, then P(v) = 1 and a correction is not performed. When LAI > 0, and 

foliage grouping has a random distribution, then the clumping index   = 1 and Equation 10 returns 

to the original Beer’s law. The latter includes areas with single ground-layers (e.g., peri-urban 

vegetation). Conversely, if the distribution is not random, then the clumping index can be larger 

or smaller than unity. In the case that the leaf distribution is more regular (leaves side by side) than 

random, then the clumping index   > 1. As such, the same value of LAI over a given VNP46 

pixel, can intercept more NTL emissions originating from the ground surface; thus, making P(v) 

smaller, and the corresponding adjustment to LNTL (P(v) in Equation 1) is larger. 

The Pgap equation can be inverted from available daily VIIRS BRDF-derived clumping index 

values, as done in Hill et al., (2011) and He et al., (2012). The VIIRS LAI retrievals are based on 

the current standard product (Park et al., 2017). In the case of poor-quality or missing LAI values 

(e.g., when LAI is not retrieved over dense urban areas), we are employing the VIIRS LAI backup 

algorithm by using a Look-up Table (LUT) (Knyazikhin et al., 1999; Xiao et al., 2016) with 

Normalized Difference Vegetation Index (NDVI) generated from high quality retrievals from the 

VIIRS NBAR product (Shuai et al., 2013). Using this approach, we can define the clumping index 

based on Chen et al., (2005) as: 

      vmvv DNDHDC   ,,  (11) 
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Here, NDHD is the Normalized Difference between Hotspot and Darkspot (NDHD) – an angular 

index used to characterize the anisotropic behavior of vegetation, which has been related to ground 

based measurements of clumping index (He et al., 2012; Lacaze et al., 2002; Leblanc et al., 2005; 

Zhao et al., 2012). BRFhot and BRFdark are the reflectances at the ‘hotspot’ and ‘darkspot’, 

respectively. Thus, NDHD can be estimated directly from the retrieved VIIRS BRDF model 

parameters (fiso, fvol, fgeo in Equation 3) by specifying the RTLSR model kernels for the 

corresponding hotspot and darkspot geometries. The values of C (v) and D (v) in Equation 11 are 

estimated by applying the linear coefficients of the line of best fit to the VIIRS-derived NDHD 

values (see Table 2 in Chen et al., 2005). For the VNP46 implementation, we chose the coefficients 

of regression based on a full ellipsoid shape in the Red spectral region [0.662 - 0.682 m]. The 

Pgap effect is dominant across NTL pixels with lower build-up densities (e.g., small cities and 

suburban areas), where green spaces are often protected from development. In contrast, Pgap values 

are often closer to unity (no correction) near densely-built city centers (e.g. Paris and Chicago). 

2.2. Product Description 

The NASA Black Marble product suite includes daily at-sensor TOA nighttime radiances 

(VNP46A1) and daily moonlight and atmosphere corrected NTL (VNP46A2) products at 500 m 

geographic Linear Lat/Lon grid. The data are available in standard land HDF-EOS (Hierarchical 

Data Format - Earth Observing System) format. The VNP46A1 product contains 22 layers 

including sensor radiance (500m), zenith and azimuth angles at sensor, solar, and lunar, cloud 

mask flag, time, shortwave IR radiance, brightness temperatures, VIIRS quality flags, moon phase 

angle, and moon illumination fraction. The detail information on these VNP46A1 product layers 

is given in  
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Table 7. The VNP46A2 products has 6 layers containing information on BRDF corrected NTL 

(500m), mandatory quality flag, high quality retrieval (number of days), snow flag,  and cloud 

mask flag. The detail VNP46A2 layer properties are described in Table 8. These data will be made 

available both retrospectively, via NASA’s Level 1 and Atmosphere Archive and Distribution 

System (LAADS), and in forward (near-real time) data streams, via NASA’s Land, Atmosphere 

Near Real-time Capability for EOS (LANCE). 

3. PRODUCT GENERATION 

3.1. Level 1 calibrated DNB radiances 

The VIIRS DNB sensor is a temperature controlled Charge Coupled Device (CCD) that has 672 

sub-pixel detectors along-track, which are aggregated on-board to create 16 nearly constant 742 m 

along-track pixels for each along-scan frame (Wolfe et al., 2013). These observations are acquired 

at three different stages of Low- Mid- and High Gain (LGS, MGS, and HGS, respectively) with 

high sensitivity for low NTL conditions (Mills and Miller, 2016). With the aggregation mode, 

detector, gain stage, and Half-angle Mirror (HAM)-side dependent calibration performed, the 

VIIRS DNB degradation was conclusively traced and has been well characterized (Chen et al., 

2017; Xiong et al., 2014).  The stray light contamination on the DNB, which is a transient issue 

affecting up to 25% of night scenes in the mid-to-high latitude regions (Chen et al., 2017; Mills et 

al., 2013), is also being routinely corrected by the VIIRS Calibration Support Team (VCST) (Chen 

et al., 2017; Lee et al., 2014). Results from ongoing Collection V001 reprocessing of the NASA 

Level 1 product includes additional updates to the VIIRS DNB terrain-corrected geolocation, 

straylight, and calibration LUTs. Finally, routine reporting and removal of bad DNB granules (e.g., 

resulting from Suomi-NPP calibration maneuvers or Rotating Telescope Assembly (RTA)/HAM 

sync loses) is being conducted by the VIIRS Calibration Support Team (VCST) using specialized 

software to mitigate leakage into the VNP46 product suite. 

3.2. Algorithm Processing Cycle 

NASA’s Black Marble (VNP46) algorithm processing cycle is divided into daytime and 

nighttime branches (Figure 2). Each processing branch produces a unique set of ancillary and 

quality assurance (QA) flags. 
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Figure 2 Algorithm processing cycle and ancillary parameters used by NASA’s Black Marble 

product suite (VNP46). 

For the daytime branch, science processing software based on the standard suite of VIIRS Land 

products are integrated as part of NASA’s Black Marble processing chain. First, a modified version 

of the operational VIIRS Surface Reflectance algorithm (Roger et al., 2016; Vermote et al., 2014) 

is used to generate the DNB surface bi-directional reflectances (BRFs) using NASA’s Level 1B 

calibrated radiance product as input (i.e., 6-minute granules, or 2366 km along track and ~3100 

km across-track). Level 2G DNB Surface Reflectances are then generated by performing spatial 

and temporal aggregation to 500m grid cells over daily time periods (Campagnolo et al., 2016; 

Pahlevan et al., 2017; Wolfe et al., 1998; Yang and Wolfe, 2001). Daily Level 3 DNB 

BRDF/Albedo data are then retrieved using the VIIRS heritage algorithm (VNP43) (Liu et al., 

2017), and corresponding Snow Flags are estimated using the heritage VIIRS Normalized 

Difference Snow Index (NDSI) algorithm (VNP10) (Riggs et al., 2017, 2016). The NDVI and 

NDSI values are used to determine the growing, dormant, and snow periods to update the a priori 
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global database of the DNB BRDF product (Cescatti et al., 2012; Y. Liu et al., 2017; Román et al., 

2009). Surface BRFs from the VIIRS I1 (red) and I2 (NIR) channels are used to obtain daily 

estimates of LAI (Knyazikhin et al., 1999; Park et al., 2017; Xiao et al., 2016). The retrieved LAI 

and clumping index values are then used to calculate the gap fraction probability (Pgap).  

The nighttime branch describes the path followed to generate the final VNP46 products. We begin 

with the at-sensor TOA nighttime radiances (VNP46A1), along with the corresponding nighttime 

cloud mask, multiple Solar/Viewing/Lunar geometry values (including moon-illuminated fraction 

and phase angles), and the daily snow and aerosol status flags. These additional Science Data Sets 

(SDS) enable open access to the primary inputs used to generate the NASA Black Marble NTL 

time series record; thus, ensuring reproducibility of the final outputs. For example, using 

VNP46A1 as input, end-users seeking to employ NTL data in light pollution studies can develop 

different variations of the products under different sky-illumination conditions (e.g., daily 

retrievals in which atmospheric, topographic and cloud effects are removed, but seasonal and 

lunar-related changes are not removed). Algorithm developers also interested in contributing 

additional refinements to the VNP46 product suite, or in developing their own series of higher-

level DNB products (e.g., for nighttime aerosol, cloud optical properties, and ocean NTL 

applications), can also make use of these SDS layers; thus, greatly reducing the complexity of data 

processing and subsequent analyses. A series of temporal and spatial gap-filling techniques are 

also employed to improve the coverage of the VNP46 NTL product.  
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Figure 3 VNP46 product suite components for a 10° x 10° Level 3 tile over France and the Balearic 

Sea region (h18v04; DOY 2015-091). The full-moon-illuminated and 51% cloud-contaminated 

scene illustrates the challenges of nighttime cloud-masking over snow- covered surfaces (e.g., the 

French Alps and the Pyrenees). 
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Figure 4 VNP46 product suite components for a 10 x 10 Level 3 tile over Sweden and Finland 

(h20v02; DOY 2013-080). The half-moon-illuminated and 30% cloud-contaminated scene is 

shown to capture extraneous light emissions north of the Gulf of Bothnia caused by the Aurora 

Borealis. 

Results shown in Figure 3 and Figure 4 illustrate the key processing steps used to retrieve high-

quality NTL as part of NASA’s Black Marble product suite. Cloud-free, atmospheric-, seasonal-, 

and moonlight BRDF-corrected DNB nighttime radiances are produced using the nighttime DNB 

Level 1 at-sensor radiances, nighttime cloud mask, aerosol optical depth values, snow status flag, 

Ross-Li DNB BRDF model parameters and albedo values, Pgap, and per-pixel estimates of DNB 

Lunar irradiance and corresponding geometries. A mandatory quality assurance (QA) flag is then 

provided to establish the pixel-specific estimates of retrieval performance. Note that, when the 

temporal gap-filling routine is called upon, as reported in the Mandatory Quality Assurance (QA) 

Flags (Table 10), the latest high-quality date observed, based on retrievals using the main 

algorithm, is reported as a separate SDS layer. If an outlier is still detected, after temporal gap-
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filling, then the VNP46 algorithm defaults to a monthly climatology based on the most recent 

available moonless high QA values. Thus, through judicious use of the VNPD46 product quality 

flag, the end-user can establish whether a particular temporally-gap filled NTL value is based on 

a recent date or not. This results in a traceable moonlight-adjusted NTL product to assess current 

versus recent NTL conditions, while reducing persistent data gaps caused by nighttime clouds, 

snow, and other ephemeral artifacts (e.g., the Aurora Borealis - cf., Figure 4). The reader is 

referred to the Appendix for additional details regarding the individual VNP46 products, including 

a full description of quality flags and controls exercised through the NTL retrieval process. 

4. PRODUCT ACCURACY/UNCERTAINTY 

4.1. Evaluation of Product Performance 

The overarching goal of NASA’s Black Marble science product development efforts is to achieve 

a “Breakthrough” performance specification (cf., Table 1) by conducting the following tasks: (1) 

long-term stability monitoring of the entire VNP46 algorithm processing chain, including the 

fundamental (Level 1B) VIIRS DNB time series record, terrain-corrected geolocation, straylight 

correction, and calibration LUTs; and (2) global quality assessment, uncertainty quantification, 

and product validation. To assess progress on these tasks, we have developed a series of seven 

benchmark tests to quantify product performance at representative spatial and temporal scales. 

This comprehensive suite of benchmark tests and assessment metrics is meant to ensure that 

variations in VNP46 product performance can be identified quickly, so that improvements can be 

implemented in a timely fashion. It also enables the end-user to consider the products in their 

appropriate context, e.g., by anticipating appropriate noise reduction levels under specific retrieval 

conditions. 

4.1.1. Detection Limit and Robustness 

To enable quantitative uses of NTL time series data, one must first establish the robustness of the 

algorithm with appropriate detection limits that are globally applicable and temporally consistent. 

This is particularly true when using NTL to characterize abrupt short-term changes (e.g., power 

outages) or to quantify low-lit NTL across areas of concentrated energy poverty. Accordingly, we 

conducted a series of benchmark tests to address the following questions: 
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– Benchmark Test #1: How do daily variations in aerosol optical depth, under varying view-

illumination conditions, influence NTL retrieval performance? 

– Benchmark Test #2: How do daily variations in surface albedo, under varying view-

illumination conditions, influence NTL retrieval performance? 

– Benchmark Test #3: Is there a dependence between NTL and daily variations in anisotropic 

diffuse moon-illumination and multiple scattering (i.e., Albedo-aerosol coupling effects)? 

The goal of benchmark tests #1 to #3 is to assess variations in low-lit NTL emissions; hereby 

expressed in terms of the background noise, or floor, of a NTL product; where both Lmin and L0 

should equal to 0.0 nW·cm-2·sr-1. For each benchmark test, we employed a large spatial sample of 

30 Level 3 tiles (each sized: 10 x 10 - cf., highlighted red tiles in Figure 12) using the entire 

available VIIRS DNB (Collection V001) time series. This augmented analysis was necessary to 

capture a diverse range of geographic locations and time periods representing global conditions. 

To further establish whether a correction resulted in improved performance, each benchmark test 

was conducted at two different levels of the NASA Black Marble algorithm processing chain: (1) 

at the upstream level, using cloud-corrected at-sensor TOA radiances only (hereby termed, TOA), 

and (2) at the final processing level; using cloud-, atmospheric-, seasonal-, and moonlight BRDF-

corrected NTL data (VNP46A2). 

We used the following sampling scheme to produce statistical metrics for each benchmark 

test: (1) Background NTL pixels contained within each sampled Level 3 tile (30 in total) were 

identified using the Global Urban Footprint (GUF) product (Esch et al., 2017, 2013) and removing 

1% of outliers. (2) The samples were partitioned into 12 groupings, each representing a discrete 

range of daily black-sky albedo (BSA, BSA < 0.2, BSA ≥ 0.2), viewer zenith angle (VZA, VZA 

< 45, VZA ≥ 45), and aerosol optical depths (AOD, AOD < 0.5, AOD ≥ 0.5) (see plot legends 

in Figure 5-Figure 10). (3) For each of these groupings, the average TOA and VNP46A2 radiance 

was estimated for instances with matching illumination conditions. (4) Finally, each of these 

instances was then paired with sample data from the entire available DNB time series record (2012- 

mid 2017), corresponding to the full range of illumination conditions (i.e., average values for 

samples with moon illuminated fractions from 0% to 100%, with a precision of ±1.5). Results for 

benchmark tests #1 to #3 (Figure 5-Figure 10), as well as summary statistics extracted for four 

final groupings (i.e., TOA vs VNP46A2, for moon illuminated fraction < 50% and moon 
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illuminated fraction ≥ 50%) (Table 2-Table 4), illustrate the highly non-linear dependence of 

background DNB pixels to BSA, VZA, AOD, and combinations thereof.  

 

Figure 5 Benchmark Test #1: NTL (View Zenith Angle (VZA), Aerosol Optical Depth (AOD). 

(Left and Center) Daily VIIRS TOA (cloud-corrected at-sensor DNB radiances in nW·cm-2·sr-1) 

and VNP46A2 scenes (cloud-free, atmospheric-, seasonal-, and moonlight BRDF-corrected DNB 

nighttime radiances) are shown in red and blue (respectively) for three Level 3 tiles exhibiting 

near- to full- moon conditions. Cloudy pixels were left visible in the TOA product for viewing 

purposes. (Right) Benchmark Test #1 plots corresponding to each scene. For reference, the 
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threshold (Lmin = 3.0 nW·cm-2·sr-1) and breakthrough (Lmin = 0.5 nW·cm-2·sr-1) performance 

specifications are shown as black-dotted and solid horizontal lines (respectively). 

 

Figure 6 Results for Benchmark Test #1: NTL (VZA, AOD). A globally representative spatial 

sample of 30 VIIRS Level 3 tiles provides insights into the performance of the NASA Black 

Marble NTL radiance product (VNP46A2: shown in blue) compared to the cloud-corrected at-

sensor radiance (TOA: shown in red) (both shown in units of nW·cm-2·sr-1). Results are plotted 

along the full range of illumination conditions experienced by the DNB time series record (X-axis 

= Moon Illuminated Fraction %). For reference, the threshold (Lmin = 3.0 nW·cm-2·sr-1) and 

breakthrough (Lmin = 0.5 nW·cm-2·sr-1) performance specifications are shown as black-dotted and 

solid horizontal lines (respectively). 
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Table 2 Summary statistics for Benchmark Test #1; NTL (VZA, AOD). Values describe two key 

performance metrics for NASA’s Black Marble product suite: (1) detection limit (Lmin) and (2) 

robustness (L0). Results are based on a discrete range of View Zenith Angles (VZA < 45, VZA 

≥45) and Aerosol Optical Depths (AOD < 0.5, AOD ≥ 0.5) captured from all available (2012-

YTD) cloud-corrected background NTL pixels for 30 VIIRS Level 3 tiles (10 x 10). 

TILE ID 

Minimum Detectable Radiance (Lmin) Retrieval Uncertainty @ Lmin (L0) 

TOA VNP46A2 TOA VNP46A2 TOA VNP46A2 TOA VNP46A2 

Moon Fraction < 50% Moon Fraction ≥ 50% Moon Fraction < 50% Moon Fraction ≥ 50% 

h10v05 0.558 0.370 1.829 0.255 0.052 0.050 1.040 0.021 

h11v07 0.752 0.617 2.921 0.420 0.075 0.055 1.768 0.046 

h12v09 0.331 0.203 2.411 0.140 0.076 0.019 1.687 0.012 

h12v10 0.322 0.188 2.340 0.127 0.077 0.016 1.668 0.012 

h12v11 0.400 0.289 2.384 0.156 0.062 0.036 1.601 0.032 

h13v11 0.636 0.520 2.663 0.331 0.076 0.041 1.645 0.033 

h17v08 0.400 0.252 2.910 0.154 0.095 0.031 2.009 0.020 

h18v04 0.692 0.540 2.162 0.355 0.069 0.157 1.211 0.055 

h18v05 0.563 0.336 3.968 0.210 0.136 0.075 2.869 0.013 

h19v04 0.763 0.610 2.223 0.419 0.088 0.091 1.248 0.089 

h20v11 0.336 0.221 2.475 0.124 0.065 0.022 1.734 0.023 

h21v05 0.641 0.435 3.255 0.279 0.065 0.042 2.158 0.031 

h22v05 0.714 0.535 3.398 0.319 0.077 0.032 2.229 0.043 

h22v06 0.581 0.440 4.572 0.255 0.117 0.028 3.399 0.034 

h23v05 0.543 0.350 2.844 0.208 0.073 0.040 1.964 0.027 

h23v06 0.595 0.451 3.954 0.269 0.131 0.033 2.918 0.033 

h24v05 0.446 0.226 2.963 0.129 0.070 0.039 2.132 0.024 

h24v06 0.428 0.254 2.983 0.145 0.090 0.042 2.190 0.029 

h25v05 0.517 0.296 3.023 0.169 0.045 0.047 2.055 0.018 

h25v06 0.647 0.484 2.994 0.293 0.079 0.058 1.959 0.030 

h25v07 0.641 0.521 2.715 0.317 0.076 0.048 1.725 0.032 

h25v08 0.501 0.413 2.181 0.268 0.081 0.039 1.408 0.031 

h26v05 0.425 0.206 3.142 0.110 0.092 0.040 2.335 0.019 

h26v06 0.568 0.405 2.682 0.233 0.080 0.057 1.740 0.028 

h26v07 0.428 0.326 2.051 0.188 0.067 0.041 1.325 0.026 

h27v05 0.416 0.191 3.001 0.098 0.072 0.034 2.215 0.016 

h27v06 0.410 0.241 2.494 0.122 0.066 0.037 1.733 0.023 

h28v08 0.457 0.342 2.515 0.241 0.055 0.028 1.686 0.025 

h29v05 0.580 0.359 2.379 0.204 0.058 0.053 1.444 0.022 

h32v12 0.290 0.153 2.262 0.076 0.074 0.029 1.692 0.021 
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Figure 7 Benchmark Test #2: NTL (VZA, BSA). Note the dynamic range used for the Daily TOA 

and VNP46A2 scenes (Left and Center) is [0 to 20 nWatts·cm-2·sr-1]. Otherwise, setup is the same 

as Figure 5. 
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Figure 8 Results for Benchmark Test #2: NTL (VZA, BSA). Set up is the same as Figure 6. 
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Table 3 Summary statistics for Benchmark Test #2 – NTL (VZA, BSA) – based on a discrete 

range of View Zenith Angles (VZA < 45, VZA ≥45) and Black-Sky Albedos (BSA < 0.2, BSA 

≥ 0.2). Set up is the same as Table 2. 

TILE ID 

Minimum Detectable Radiance (Lmin) Retrieval Uncertainty @ Lmin (L0) 

TOA VNP46A2 TOA VNP46A2 TOA VNP46A2 TOA VNP46A2 

Moon Fraction < 50% Moon Fraction ≥ 50% Moon Fraction < 50% Moon Fraction ≥ 50% 

h10v05 0.645 0.406 2.373 0.326 0.089 0.045 1.360 0.029 

h11v07 0.694 0.542 3.217 0.364 0.102 0.044 2.053 0.058 

h12v09 0.378 0.243 2.520 0.154 0.085 0.033 1.747 0.015 

h12v10 0.333 0.195 2.641 0.134 0.097 0.015 1.929 0.010 

h12v11 0.391 0.267 2.538 0.164 0.085 0.027 1.761 0.034 

h13v11 0.821 0.698 2.975 0.421 0.126 0.109 1.879 0.069 

h17v08 0.419 0.267 2.948 0.160 0.100 0.032 2.010 0.018 

h18v04 0.766 0.512 2.793 0.468 0.100 0.097 1.597 0.095 

h18v05 0.661 0.417 3.512 0.278 0.116 0.084 2.394 0.014 

h19v04 0.820 0.669 2.793 0.477 0.076 0.117 1.619 0.115 

h20v11 0.356 0.232 2.958 0.135 0.085 0.019 2.196 0.018 

h21v05 0.716 0.504 3.293 0.335 0.073 0.052 2.115 0.023 

h22v05 0.720 0.531 3.326 0.321 0.068 0.025 2.198 0.049 

h22v06 0.581 0.440 3.890 0.259 0.105 0.020 2.831 0.043 

h23v05 0.545 0.339 2.963 0.200 0.076 0.028 2.071 0.031 

h23v06 0.599 0.440 3.709 0.266 0.118 0.030 2.695 0.037 

h24v05 0.462 0.236 2.983 0.137 0.068 0.036 2.143 0.024 

h24v06 0.440 0.256 3.186 0.146 0.098 0.039 2.374 0.029 

h25v05 0.542 0.307 3.231 0.188 0.065 0.040 2.237 0.019 

h25v06 0.656 0.485 3.262 0.307 0.097 0.049 2.176 0.031 

h25v07 0.697 0.552 3.166 0.337 0.089 0.054 2.038 0.032 

h25v08 0.525 0.415 2.589 0.282 0.108 0.036 1.550 0.038 

h26v05 0.442 0.215 3.222 0.118 0.095 0.041 2.415 0.022 

h26v06 0.555 0.374 3.279 0.226 0.099 0.035 2.292 0.035 

h26v07 0.573 0.437 2.786 0.272 0.098 0.052 1.793 0.030 

h27v05 0.430 0.195 3.109 0.105 0.077 0.035 2.319 0.017 

h27v06 0.429 0.242 3.290 0.125 0.076 0.037 2.428 0.020 

h28v08 0.617 0.495 2.793 0.328 0.071 0.068 1.791 0.050 

h29v05 0.617 0.370 2.746 0.221 0.070 0.063 1.749 0.021 

h32v12 0.305 0.156 2.667 0.083 0.085 0.030 2.082 0.022 
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Figure 9 Benchmark Test #3: NTL (BSA, AOD). Note the Daily TOA and VNP46A2 scenes (Left 

and Center) exhibit half-moon to moonless conditions (Moon Fraction ≤ 50%). Otherwise, setup 

is the same as Figure 6. 
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Figure 10 Results for Benchmark Test #3: NTL (BSA, AOD). Set up is the same as Figure 6. 
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Table 4 Summary statistics for Benchmark Test #3 – NTL (BSA, AOD) – based on a discrete 

range of Black-Sky Albedos (BSA < 0.2, BSA ≥ 0.2) and Aerosol Optical Depths (AOD < 0.5, 

AOD ≥ 0.5). Set up is the same as Table 2. 

TILE ID 

Minimum Detectable Radiance (Lmin) Retrieval Uncertainty @ Lmin (L0) 

TOA VNP46A2 TOA VNP46A2 TOA VNP46A2 TOA VNP46A2 

Moon Fraction < 50% Moon Fraction ≥ 50% Moon Fraction < 50% Moon Fraction ≥ 50% 

h10v05 0.513 0.320 1.865 0.247 0.065 0.037 1.040 0.023 

h11v07 0.684 0.532 3.059 0.387 0.114 0.048 1.934 0.058 

h12v09 0.346 0.215 2.368 0.146 0.067 0.023 1.624 0.015 

h12v10 0.313 0.175 2.480 0.127 0.085 0.012 1.791 0.009 

h12v11 0.367 0.256 2.357 0.153 0.075 0.040 1.565 0.033 

h13v11 0.819 0.691 2.753 0.415 0.107 0.117 1.694 0.078 

h17v08 0.383 0.239 2.793 0.151 0.092 0.027 1.887 0.017 

h18v04 0.678 0.484 2.646 0.382 0.082 0.116 1.590 0.091 

h18v05 0.618 0.384 3.230 0.247 0.109 0.085 2.197 0.017 

h19v04 0.738 0.549 2.715 0.393 0.076 0.080 1.661 0.075 

h20v11 0.326 0.204 2.646 0.122 0.070 0.025 1.903 0.022 

h21v05 0.638 0.422 3.009 0.276 0.064 0.048 1.942 0.023 

h22v05 0.712 0.511 3.202 0.302 0.071 0.033 2.068 0.043 

h22v06 0.618 0.451 3.997 0.286 0.099 0.023 2.879 0.039 

h23v05 0.542 0.344 2.779 0.200 0.066 0.039 1.916 0.028 

h23v06 0.604 0.454 3.593 0.281 0.121 0.029 2.575 0.045 

h24v05 0.447 0.225 2.863 0.127 0.061 0.037 2.029 0.023 

h24v06 0.431 0.255 2.986 0.146 0.090 0.041 2.197 0.029 

h25v05 0.509 0.271 3.260 0.161 0.045 0.040 2.254 0.017 

h25v06 0.631 0.466 3.065 0.291 0.083 0.057 2.014 0.024 

h25v07 0.587 0.463 2.698 0.298 0.089 0.048 1.705 0.033 

h25v08 0.467 0.372 2.047 0.252 0.091 0.044 1.281 0.036 

h26v05 0.426 0.201 3.067 0.112 0.087 0.037 2.263 0.019 

h26v06 0.519 0.337 3.150 0.204 0.091 0.040 2.181 0.033 

h26v07 0.406 0.302 2.063 0.193 0.068 0.034 1.300 0.021 

h27v05 0.419 0.187 3.073 0.099 0.070 0.033 2.282 0.016 

h27v06 0.409 0.220 3.166 0.114 0.070 0.032 2.337 0.017 

h28v08 0.531 0.409 2.537 0.284 0.064 0.054 1.673 0.044 

h29v05 0.601 0.365 2.646 0.216 0.066 0.060 1.674 0.024 

h32v12 0.289 0.143 2.484 0.076 0.080 0.028 1.916 0.021 

 

The individual (tile-based) benchmark test results in Figure 6, Figure 8, and Figure 10 (which 

plot background NTL pixels as a function of moon-illuminated fraction) help illustrate how the 

refined product (VNP46A2) maintains a near constant background radiance profile across the 

entire lunar illumination cycle; well within the “Breakthrough” and the “Goal” performance 

requirements for Lmin and L0, respectively. In contrast, when using the cloud-corrected TOA 

product, only 27% of reported cases (all based on moonless periods, where Moon Fraction < 50%) 
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met the “Goal” requirement, while 37% of cases (all based on moonlit conditions, where Moon 

Fraction ≥ 50%) failed to meet the minimum “Threshold” requirement; indicating the TOA 

product’s lack of consistency (in a global sense), and its inaptness for applications requiring a 

stable NTL time series record for accurate characterization of change. 

The albedo effect is shown to significantly influence NTL product performance, particularly 

during moonlit periods (Moon Fraction ≥ 50%). For most tiles, Lmin values for TOA data with 

albedos less than 0.2 were consistently lower than values with BSA data higher than 0.2. For TOA 

products during moonlit periods, the influence of albedo was also more pronounced compared to 

AOD. Both the detection limit (Lmin) and robustness (L0) were also found to be larger (and 

therefore worse) over desert regions, e.g. the Saharan Desert (h18v05), the Middle East (h21v05, 

h22v05, h22v06, and h23v06), and the Tibetan Plateau (h26v05, h26v06, h27v05, and h27v06). 

For these cases, Lmin and L0 often failed to meet their “Threshold” performance requirements. 

While the increased level of measurement error in the TOA data can be anticipated for bright 

surface conditions, the fact that equally higher degradations for L0 were observed suggests that 

additional higher-order effects (e.g., increased influence of anisotropic diffuse illumination and 

multiple scattering) are also impacting NLT retrieval quality. This was especially true for desert 

areas, where the total uncertainty of the product (Lmin + L0) is shown to be higher than the Lmin 

“Threshold” performance requirement by a factor of at 1.6x to 2.0x. 

We also found that the restricted use of TOA data under moonless nights does not necessarily 

result in a higher-quality NTL retrieval; even for conditions experiencing lower AOD and albedos 

(Figure 6 and Figure 8). In fact, 98.3% of VNP46A2 benchmark test results under moonlit 

conditions, for both Lmin and L0, were actually lower (and thus better) than the TOA benchmark 

test results under moonless conditions (Table 2, Table 3, and Table 4). These benchmark tests, 

therefore, help confirm the temporal consistency of the VNP46A2 product across the entire moon-

illuminated cycle. 

4.1.2. Performance of the VIIRS Nighttime Cloud Mask 

Another key factor that affects the quality of NTL products is the performance of the VIIRS 

Nighttime Cloud Mask (VCM). Accordingly, we conducted the following benchmark test to 

establish the following question:  
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- Benchmark Test #4: What is the fraction of confidently clear land-based nighttime VCM 

detections that were flagged by the VNP46 algorithm as less than a high-quality NTL retrieval? 

The goal of this test is to establish the overall skill of the VCM to correctly map confidently clear 

nighttime pixels, which (in the absence of additional post-processing steps) can lead to a high-

quality NTL retrieval. The performance metric is expressed in terms of the probability of correct 

typing (PCT) (Kopp et al., 2014). We established PCT values by counting the total number of 

confidently clear VCM pixels that were subsequently flagged for additional inspection. Flagging 

of suspect VCM detections is done in the Lunar BRDF correction process (nighttime branch), 

which outputs a poor-quality mandatory QA flag when the VNP46 algorithm fails to produce a 

reliable NTL result, and through additional consistency checks conducted during the temporal gap-

filling process. 

Results for benchmark tests #4 (Table 5 and Table 6) illustrate how the performance of the 

nighttime VCM varies significantly depending on factors such as moon-illumination conditions, 

surface albedo (e.g., retrieval conditions with high albedos, e.g., desert and snow have worst PCT 

values), as well as atmospheric, climatic, and geographic conditions. The VCM performance 

requirement established by the JPSS program is ≥ 88% PCT. This requirement only applies to thick 

clouds optical thickness (COT) greater than 1.0 tau. This is a challenge for NTL time series 

detection, particularly since thin cirrus and low cloud fields often lead the VCM to think that the 

NTL pixel is clear. In addition to NTL attenuation caused by clouds with COT values less than 1.0 

tau, the scattering effects in terms of light diffusion and even side-illumination can introduce 

spurious results. 

Results point to a PCT of 89.03% under moonless conditions, 81.92% under moonlit conditions, 

and a global PCT of 85.5% under all conditions tested. Note that the PCT values reported in this 

test only describe the overall performance of the VCM vis-à-vis the NASA Black Marble NTL 

data processing chain. As such, results are not representative of the true performance 

characteristics of the nighttime VCM product.  
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Table 5 Summary statistics for Benchmark Test #4 (VCM Performance Test). Values describe the 

total probability of correct typing (PCT) corresponding to each sample VIIRS Level 3 tile, as well 

as for six different groupings (as done in benchmark tests #1 to #3) based on a discrete range of 

BSA, VZA, and AOD values observed for moon illuminated fractions < 50%. 

TILE 

ID 

Total 

PCT 

PCT By Grouping (Moon Fraction < 50%) 

VZA < 45° VZA ≥ 45° BSA < 0.2 BSA ≥ 0.2 AOD < 0.5 AOD ≥ 0.5 

h10v05 90.46% 91.30% 89.01% 94.27% 67.27% 90.85% 88.65% 

h11v07 92.66% 94.22% 91.00% 95.69% 69.37% 92.98% 91.82% 

h12v09 92.62% 95.72% 89.37% 94.64% 74.81% 93.14% 91.02% 

h12v10 92.96% 94.19% 91.59% 96.07% 71.10% 92.95% 92.99% 

h12v11 91.62% 91.83% 91.35% 96.89% 62.01% 91.59% 91.81% 

h13v11 93.62% 93.48% 93.78% 97.17% 70.21% 93.88% 92.32% 

h17v08 93.15% 95.29% 90.92% 95.57% 72.54% 94.42% 91.30% 

h18v04 82.26% 88.05% 69.71% 85.31% 71.55% 83.58% 72.15% 

h18v05 87.17% 87.13% 87.25% 87.92% 87.02% 87.44% 86.67% 

h19v04 80.86% 88.28% 66.12% 82.93% 72.94% 82.79% 68.63% 

h20v11 79.90% 88.50% 70.65% 82.86% 71.53% 79.04% 83.19% 

h21v05 83.64% 85.39% 81.26% 88.56% 80.00% 84.67% 81.15% 

h22v05 86.43% 86.89% 85.69% 92.07% 83.33% 87.06% 85.16% 

h22v06 86.91% 86.87% 86.96% 80.91% 87.54% 86.62% 87.38% 

h23v05 85.63% 86.20% 84.72% 91.16% 82.21% 86.34% 84.18% 

h23v06 85.70% 86.33% 84.91% 85.82% 85.67% 85.74% 85.63% 

h24v05 86.00% 86.62% 84.99% 90.53% 83.73% 86.63% 84.53% 

h24v06 85.85% 86.41% 85.10% 90.23% 82.00% 85.91% 85.76% 

h25v05 89.09% 89.46% 88.51% 92.04% 86.06% 89.28% 88.46% 

h25v06 90.55% 90.82% 90.21% 96.78% 78.38% 90.65% 90.42% 

h25v07 92.54% 93.38% 91.62% 96.76% 66.31% 92.91% 91.93% 

h25v08 94.65% 95.78% 93.47% 96.99% 77.40% 95.50% 92.59% 

h26v05 89.36% 89.93% 88.45% 88.66% 89.63% 89.39% 89.26% 

h26v06 91.08% 91.21% 90.91% 95.80% 70.67% 91.59% 90.32% 

h26v07 91.67% 92.50% 90.73% 95.53% 62.05% 92.75% 89.97% 

h27v05 90.26% 90.65% 89.65% 92.76% 88.23% 90.54% 89.25% 

h27v06 92.84% 93.75% 91.69% 95.43% 77.05% 93.51% 90.60% 

h28v08 94.48% 97.20% 91.72% 95.85% 83.87% 95.24% 91.62% 

h29v05 89.69% 90.76% 88.01% 94.56% 66.68% 90.30% 88.30% 

h32v12 87.32% 86.92% 87.97% 93.90% 57.94% 87.36% 87.06% 
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Table 6 Summary statistics for Benchmark Test #4 (VCM Performance Test) describe the total 

probability of correct typing (PCT) under moon illuminated fractions ≥ 50%. Setup is the same as 

Table 5. 

TILE 

ID 

Total 

PCT 

PCT By Grouping (Moon Fraction ≥ 50%) 

VZA < 45° VZA ≥ 45° BSA < 0.2 BSA ≥ 0.2 AOD < 0.5 AOD ≥ 0.5 

h10v05 84.77% 86.50% 81.79% 87.26% 68.86% 85.09% 83.23% 

h11v07 82.06% 83.75% 80.23% 83.52% 71.17% 82.91% 79.84% 

h12v09 86.83% 88.74% 84.90% 88.23% 72.55% 87.65% 84.49% 

h12v10 85.99% 86.36% 85.59% 87.14% 77.57% 86.27% 84.94% 

h12v11 88.76% 88.93% 88.55% 91.03% 74.63% 89.15% 86.66% 

h13v11 88.17% 87.89% 88.53% 89.93% 74.51% 88.56% 86.38% 

h17v08 87.70% 89.51% 85.85% 88.92% 76.23% 90.60% 83.55% 

h18v04 79.38% 85.41% 66.37% 79.63% 78.58% 80.40% 70.96% 

h18v05 75.68% 76.27% 74.78% 76.70% 75.50% 76.38% 74.37% 

h19v04 77.97% 85.35% 62.87% 78.46% 76.18% 79.84% 65.17% 

h20v11 74.69% 83.05% 65.54% 72.00% 82.14% 74.16% 76.62% 

h21v05 76.44% 79.30% 72.56% 76.98% 76.10% 77.28% 74.32% 

h22v05 78.79% 79.66% 77.37% 81.41% 77.69% 79.55% 77.19% 

h22v06 71.92% 72.46% 71.24% 69.30% 72.16% 72.65% 70.73% 

h23v05 79.71% 80.16% 78.99% 78.86% 80.09% 79.81% 79.49% 

h23v06 71.90% 72.57% 71.08% 73.19% 71.56% 71.68% 72.32% 

h24v05 80.22% 80.99% 78.94% 78.09% 80.97% 80.16% 80.37% 

h24v06 77.88% 78.63% 76.88% 76.30% 78.96% 77.77% 78.04% 

h25v05 82.40% 83.31% 80.91% 83.63% 81.34% 82.07% 83.55% 

h25v06 81.95% 83.19% 80.39% 82.41% 81.22% 82.81% 80.86% 

h25v07 83.58% 85.01% 82.02% 84.82% 76.21% 85.63% 80.36% 

h25v08 86.40% 88.96% 83.76% 86.91% 82.59% 88.31% 82.39% 

h26v05 82.11% 82.98% 80.75% 79.72% 82.76% 81.93% 82.96% 

h26v06 82.74% 84.03% 81.12% 83.94% 77.77% 84.43% 80.14% 

h26v07 84.30% 85.50% 82.96% 85.50% 73.18% 87.66% 79.46% 

h27v05 82.47% 83.00% 81.61% 84.16% 81.41% 82.58% 82.04% 

h27v06 85.45% 86.27% 84.42% 86.29% 79.72% 86.34% 82.45% 

h28v08 90.59% 92.61% 88.55% 90.96% 87.12% 92.15% 84.73% 

h29v05 83.75% 85.80% 80.51% 85.02% 78.30% 85.17% 80.24% 

h32v12 82.89% 83.38% 82.09% 83.95% 79.19% 83.82% 76.30% 
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 This is particularly the case since NTL artifacts (e.g., Aurora and mid- to- high latitudes), while 

temporary in nature, can also set off the product’s QA flags; thus, resulting in slightly lower VCM 

PCT values. Nevertheless, these benchmark test provide insight into potential areas for 

improvement in the VCM algorithm. In particular, the comparatively lower PCT values under 

moonlit conditions underscore the need for considering variations in surface brightness, as 

routinely done in daytime VCM processing. 

4.1.3. Pixel-Based Variations in NTL 

The increased utility of the VIIRS Day/Night Band sensor to capture sub-pixel NTL features, has 

led to a considerable number of studies that have utilized the underlying radiances directly at the 

pixel-level (Cao and Bai, 2014; Chen et al., 2015; Elvidge et al., 2015a; Guo et al., 2015; Hu et 

al., 2015; Lee et al., 2014; Mann et al., 2016; Ou et al., 2015; Sharma et al., 2016; Shi et al., 2014; 

Straka et al., 2015; Zhao et al., 2016). The wide range of applications makes it therefore necessary 

to establish the sensitivity of residual errors and extraneous artifacts in the NTL retrievals through 

explicit assessment of product performance at the native pixel scale. Accordingly, we conducted a 

series of pixel-based benchmark tests to address the following three questions: 

– Benchmark Test #5: What is the fraction of the variation in the pixel-based NTL time series 

that can be explained by variations in moon-illuminated reflectance anisotropy (hereby termed 

the lunar BRDF effect)? 

– Benchmark Test #6: What is the fraction of the variation in the pixel-based NTL time series 

that can be explained by changes in snow cover? 

– Benchmark Test #7: What is the fraction of the variation in the pixel-based NTL time series 

that is explained by seasonal changes in canopy-level foliage? 

The performance metrics for benchmark tests #5 and #6 are both expressed in terms of the square 

of Pearson coefficient (R2 x 100%) between the 5-year NTL daily time series data and the 

periodicity of the lunar cycle (defined using daily values of moon-illumination fraction). To 

estimate the R2, we fitted a 5th order polynomial between these two variables - i.e., NTL(Moon 

Illuminated Fraction) – to establish the same relationships observed in Figure 5-Figure 10 at the 

individual pixel-level. 
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For these three tests, we employed a random stratified sample of 72,000 individual TOA and 

VNP46A2 grid cells representing a diverse range of urban covers, surface conditions, and 

latitudinal gradients. As with benchmark tests #1 to #3, these tests were based on the entire 

available Collection V001 DNB time series record (2012-mid 2017), comprising the same sample 

Level-3 tiles listed in Table 2-Table 4.  

 

 

Figure 11 The correlation between a 5-year time series of daily nighttime lights (NTL) and lunar 

phase for the cloud-corrected at-sensor DNB radiance product (TOA: shown in red) and NASA’s 

Black Marble daily moonlight adjusted nighttime lights (NTL) product (VNP46A2: shown in blue) 

shown as a function of (A) percent urban cover (benchmark test #5) and (B) snow presence 

(benchmark test #6). 
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In order to establish realistic NTL detection limits relative to anticipated changes in NTL, we used 

the Global Urban Footprint product (Esch et al., 2017, 2013) to ensure that the stratified sample 

was also spatially representative of different stages of urban growth –  from sparse rural (% Urban 

= 0) to densely built-up pixels (% Urban = 100%). Results for benchmark test #5 are illustrated in 

Figure 11(A). Note that, in the case of the TOA product, benchmark test #5 measures the degree 

of dependence in LDNB (cf., Equation 1) to Lunar BRDF effects (after cloud correction) for a wide 

range of percent urban covers. 

Conversely, for the refined product (VNP46A2), this test measures the residual variance in LNTL 

caused by lunar reflectance anisotropy effects after cloud-, atmospheric-, BRDF-, and seasonal 

(Pgap) correction. Results for the VNP46A2 product, therefore, demonstrate how the lunar BRDF 

effect can be reduced down to a Pearson R2 coefficient of 0.37, across low-density urban pixels 

(and thus, low-intensity NTL), and even lower (< 0.10) for high density urban pixels (and thus, 

high-intensity NTL). The VNP46A2 product enhancements, therefore, result in a substantial 

reduction of residual lunar contamination relative to the cloud-cleared TOA data, which had high 

R2 values, ranging from [0.4, 0.9], for DNB pixels experiencing both low to high percent urban 

covers. 

Results for benchmark test #6 illustrate the TOA and VNP46A2 products’ performance as a 

function of observed variations in snow cover (Figure 11B). The dependence of the pixel-based 

values to Lunar BRDF effects, resulting from moon-reflected snow surfaces, remained well < 0.30 

(Pearson R2 coefficient), a substantial enhancement relative to the cloud-cleared TOA data. Since 

the Lunar BRDF effect was measured as a function of the number of cloud-free snow-covered 

days within each DNB grid cell, benchmark test #6 can be used to assess the ability of the NASA 

Black Marble algorithm to effectively capture snow-covered surfaces. The comparatively lower 

R2 values across VNP46A2 pixels with short snow days (< 10% of the S-NPP time series) 

demonstrate the VNP46A2 product’s ability to correctly activate the current day snow status flag 

– a critical step for triggering the snow BRDF/albedo algorithm process necessary to mitigate 

downstream errors in the VNP46 product. This is particularly relevant for NTL conditions 

experiencing short but intense periods of snow cover; where highly reflective snow can introduce 

large positive biases in the final NTL estimates (Bennett and Smith, 2017; Levin, 2017; Román 
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and Stokes, 2015). It is also necessary for robust outlier detection; where the actual 

moon/aerosol/albedo contribution is needed to establish the boundary NTL conditions.  

This latter idea is demonstrated in Figure 4, where extraneous light emissions caused by the 

Aurora Borealis north of Lake Superior were located over snow- and cloud-contaminated DNB 

pixels. This would have led to significant errors of cloud-, snow-, and aurora-leakage, which, due 

to the use of BRDF corrected pixels as a baseline, were correctly classified as outliers by the 

VNP46 algorithm. Such higher order effects, which are common at daily time scales, underscore 

the need to routinely retrieve daily DNB BRDF quantities to better account for these rapidly 

changing scenarios. We found that a standalone climatology, based on a-priori (annual or monthly) 

DNB BRDF values, while useful for helping mitigate data gaps in the daily BRDF time series, 

resulted in increased contamination from ephemeral snow and other changing conditions. 

Results for benchmark test #7 illustrate how the seasonal increase in canopy-level foliage during 

the winter and summer months (as described in Section 2.1.3) does not affect the trend in the 

VNP46A2 NTL time series record. This refinement is illustrated in the sample plots shown in 

Figure 12, where the pixel-level VNP46A2 values (blue points) do not predominate along the 

central region of the 2nd quadrant (X ≤ 0; Y ≥ 0, or the area inside the dotted black circles in 

Figure 12), where increases in the magnitude of NTL during winter periods track corresponding 

increases in green foliage between summer and winter periods. The seasonal effect was found to 

be most pronounced across temperate regions (e.g., US, European, and Asia tiles: h10v05; h18v04; 

h18v05; h24v05; h25v05; h26v05; h29v05) as confirmed by previous studies (Bennett and Smith, 

2017; Levin, 2017; Levin and Zhang, 2017). We also found additional seasonal variations across 

sample Level 3 tiles in West Africa (h17v08) and South Africa (h20v11); suggesting that seasonal 

variations in NTL are likely to be more pervasive than originally thought. Previous assessments 

had thus far examined the seasonal variations using spatially- and temporally-aggregated NTL 

products (e.g., monthly moon-free composites at city-wide scales). The results from benchmark 

test #7, however, provide additional new insights of the variations at finer spatial and temporal 

scales.  
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Figure 12 Results for benchmark test #7. The effects of seasonal variations of NTL with NDVI 

between winter and summer periods (i.e., pixels within black-dotted circles in upper-left 

quadrants) are shown for 30 sample Level 3 tiles for the cloud-corrected at-sensor DNB radiance 

product (TOA: shown in red), and NASA’s Black Marble daily moonlight adjusted nighttime 

lights (NTL) product (VNP46A2: shown in blue). 
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4.2. Validation Approach 

The series of benchmark tests introduced in Section 4.1 were designed to quantify errors inherited 

from the upstream products (i.e., VIIRS calibrated radiances, cloud mask, aerosol retrieval, etc.) 

These evaluations, however, only provide a relative assessment of NTL product performance. To 

establish the absolute accuracy of the final NTL retrievals, one must also assess the NTL products 

against an independent source of reference data. Unfortunately, quality-assessed in-situ NTL 

measurements are not widely available; let alone, at the spatial and temporal densities necessary 

to capture the full range of retrieval conditions. Recent NASA Black Marble product validation 

efforts have therefore focused on developing guidelines for accuracy assessment of NTL products 

through a number of international initiatives described in the following subsections. 

4.2.1. GEO’s Nighttime Product Validation Task 

Under the Group on Earth Observations (GEO) Human Planet Initiative’s 2017-2019 Work 

Programme, a Nighttime Product Validation (NPV) task was recently established to foster the 

development of advanced accuracy assessment of NTL time series products. A key deliverable of 

the NPV task is the development of a good practices protocol focusing on quantitative validation 

of satellite-derived NTL products. Key components to be included as part of this protocol, are: (1) 

variable definitions and accuracy metrics following traceable units of the Système Internationale 

(SI); (2) best practice guidelines for field sampling and scaling techniques; (3) recommendations 

for reporting and use of accurate information; (4) guidelines for product inter-comparison 

exercises; and (5) recommendations for data and information exchange. 

4.2.2. Pitahaya Field Experiment 

Under technical guidance from GEO Human Planet Initiative’s NPV task, Puerto Rico’s Working Group 

on Light Pollution (PRWGLP) seeks to develop measurement standards and protocols for in-situ data 

collection. The primary driver for this activity is the development of a sustainable development indicator, 

based on NTL time series data, to better meet the multiple regulatory and scientific aspects of PR’s light 

pollution laws and ordinances. To that end, a number of scoping exercises were recently conducted 

across multiple light pollution abatement zones in Puerto Rico. This included a successful 

deployment of a stable point source of light at the Pitahaya Farmland site in Cabo Rojo, PR (Figure 

13). 
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Figure 13 The NTL radiances at the Pitahaya Farmland site in Cabo Rojo, PR on 1st, 2nd and 3rd 

March, 2017. The Top-Right image shows the setup of the stable point source. TOA and VNP46A2 

values are in nW·cm-2·sr-1. VCM = 0 represents cloud free overpasses. LZA is lunar zenith angle, 

and the values larger than 108 correspond to moonless nights. 

During the night of 2 March, 2017, at 2:00 local time, the PRWGLP team conducted a validation 

experiment at the aforementioned Pitahaya site. A stable point source was reflected by a 30 m2 

Lambertian target to generate an in-band DNB radiance at sensor (LDNB) of ~0.45nW·cm-2·sr-1. 

Additional Sky-Quality Meter (SQM) data recordings (Falchi et al., 2016; Kyba et al., 2013, 2011; 

Schnitt et al., 2013) with specialized filters matching the VIIRS relative spectral response (RSR), 

as well as atmospheric measurements from nearby AERONET sun photometers (Holben et al., 

1998) were used to characterize atmospheric conditions. 

The validation approach follows the assessment method first described in Cao and Bai (2014), 

which relies on quantitative analysis and stability monitoring of stable light point sources. We used 

the following parameters to generate our radiative transfer calculations: (1) atmospheric 

transmittance=0.80 (based on 6S radiative transfer code and AERONET calculations), a target 

reflectance = 0.8, and 16W of total effective irradiance incident on the reflective surface. Results 

in Figure 13 also illustrate how the detected VIIRS at-sensor cloud-corrected radiance (TOA) and 
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VNP46A2 estimates over the pixel centered on the reflective point source were within the 

VNP46A2 product’s “Breakthrough” requirement for Lmin (0.43 nW·cm-2·sr-1) – after removing 

background noise measured the days prior and after activation of the stable light point sources. We 

found that the final VNP46A2 product resulted in a 16.95% sensitivity enhancement (due to 

improved reduction background noise), as confirmed in previous benchmark tests, compared to 

the at-sensor cloud-corrected radiance product (TOA) under observed moon-free conditions. 

5. DATA FORMAT 

5.1. Format 

NASA’s Black Marble data are provided in the standard land HDF-EOS (Hierarchical Data Format 

- Earth Observing System) format. The filenames follow a naming convention which gives useful 

information regarding the specific product. For example, the filename 

VNP46A1.A2015001.h08v05.001.2017012234657.h5 indicates: 

• VNP46A1- Product Short Name 

• . A2015001- Julian Date of Acquisition (A-YYYYDDD) 

• .h08v05 - Tile Identifier (horizontalXXverticalYY) 

• .001 - Collection Version 

• . 2017012234657- Julian Date of Production (YYYYDDDHHMMSS) 

• .h5 - Data Format HDF5 
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Table 7 Scientific Data Sets included in the VNP46A1 Product 

Scientific Data Sets  

(HDF Layers) 

Units Bit Type Fill 

Value 

Valid 

Range 

DNB_At_Sensor_Radiance_500m 
nW·cm-2·sr-

1 
16-bit unsigned integer 65535 0 - 65534 

Sensor_Zenith Degrees 16-bit signed integer -32768 -90 - 90 

Sensor_Azimuth Degrees 16-bit signed integer -32768 -180 - 180 

Solar_Zenith Degrees 16-bit signed integer -32768 0 - 180 

Solar_Azimuth Degrees 16-bit signed integer -32768 -180 - 180 

Lunar_Zenith Degrees 16-bit signed integer -32768 0 - 180 

Lunar_Azimuth Degrees 16-bit signed integer -32768 -180 - 180 

Glint_Angle Degrees 16-bit signed integer -32768 -180 - 180 

UTC_Time 
Decimal 

Hours 
32-bit floating point -999.9 0 - 24 

QF_Cloud_Mask Class flag 16-bit unsigned integer 65535 0 - 65534 

QF_DNB Class flag 8-bit unsigned integer 255 0 - 254 

Radiance_M10 
W·m-2·μm-

1·sr-1 
16-bit unsigned integer 65535 0 - 65534 

Radiance_M11 
W·m-2·μm-

1·sr-1 
16-bit unsigned integer 65535 0 - 65534 

BrightnessTemperature_M12 Kelvins 16-bit unsigned integer 65535 0 - 65534 

BrightnessTemperature_M13 Kelvins 16-bit unsigned integer 65535 0 - 65534 

BrightnessTemperature_M15 Kelvins 16-bit unsigned integer 65535 0 - 65534 

BrightnessTemperature_M16 Kelvins 16-bit unsigned integer 65535 0 - 65534 

QF_VIIRS_M10 Class flag 8-bit unsigned integer 255 0 - 254 

QF_VIIRS_M11 Class flag 8-bit unsigned integer 255 0 - 254 

QF_VIIRS_M12 Class flag 8-bit unsigned integer 255 0 - 254 

QF_VIIRS_M13 Class flag 8-bit unsigned integer 255 0 - 254 

QF_VIIRS_M15 Class flag 8-bit unsigned integer 255 0 - 254 

QF_VIIRS_M16 Class flag 8-bit unsigned integer 255 0 - 254 

Moon_Phase_Angle Degrees 16-bit signed integer -32768 0 - 180 

Moon_Illumination_Fraction Degrees 16-bit signed integer -32768 0 - 100 

Granule None 8-bit unsigned integer, 255 0 - 254 
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Table 8 Scientific Data Sets included in the VNP46A2 Product 

Scientific Data Sets (HDF Layers) Units Bit Type 
Fill 

Value 

Valid 

Range 

DNB_BRDF-Corrected_NTL_500m nWatts·cm-2·sr-1 16-bit unsigned 

integer 

65535 0 - 65534 

Mandatory_Quality_Flag Class flag 8-bit unsigned 

integer 

255 0 - 254 

Latest_High_Quality_Retrieval Number of Days 8-bit unsigned 

integer 

255 0 - 254 

Snow_Flag Class flag 8-bit unsigned 

integer 

255 0 - 254 

QF_Cloud_Mask Class flag 8-bit unsigned 

integer 

255 0 - 254 
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5.2. QA Metadata 

Details of flag description key and quality flags of the product VNP46A1 and VNP46A2 are shown 

in following tables. 

Table 9 Values of QF_Cloud_Mask in the VNP46A1 product 

Bit Flag description key Results 

0 Day / Night 0=Night  

1=Day 

1-3 Land / Water Background 000=Land & Desert  

001=Land no Desert  

010=Inland Water  

011=Sea Water  

101=Coastal 

4-5 Cloud Mask Quality 00=Poor  

01=Low 

10=Medium 

11=High 

6-7 Cloud Detection Results & Confidence Indicator 00=Confident Clear  

01=Probably Clear 

10=Probably Cloudy  

11=Confident Cloudy  

8 Shadow Detected 1=Yes 0=No 

9 Cirrus Detection (IR) (BTM15-BTM16) 1=Cloud  

0=No Cloud 

10 Snow/ice surface 1=snow/ice 

0=no snow/ice 

 

Table 10 Values of the Mandatory_Quality_Flag in the VNP46A2 product 

Value Retrieval Quality Algorithm Instance 

00 High-Quality Main Algorithm (Persistent Nighttime Lights) 

01 Good-Quality Back up Algorithm (Temporal Gap-Filling) 

02 Poor-Quality Back up Algorithm (Outlier Removal) 

255 No Retrieval Fill Value 
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5.3. Spatial Projection 

NASA’s Black Marble product suite (VNP46) employs the standard VIIRS Land science 

algorithms and software that produce the DNB standard (radiance-based) products, and their 

corresponding ancillary layers in gridded (Level 2G, Level 3) geographic Linear Lat/Lon (LLL) 

format (Figure 14). The gridding algorithms were modified to work with the VIIRS Day/Night 

Band’s (DNB) unique viewing geometry, which, unlike the VIIRS moderate and imagery bands, 

has a ground pixel footprint at a nearly constant size (742 m). The rationale behind the VIIRS 

DNB gridding approach is to select the nighttime observations from available 6-minute swath 

granules (2366 km along track, ~3100 km across-track), that are the least affected by cloud cover 

and off-nadir viewing observations. The goal is to increase signal-to-noise, while maximizing 

coverage within a cell of the gridded projection (Tan et al., 2006; Wolfe et al., 2002). By 

implementing this combined gridding strategy and LLL projection formats, we seek to improve 

the efficiency of processing and reprocessing of the VNP46 product suite, preserve the satellite 

location and observation footprints, while also enabling the ingest of the products into accessible 

software for GIS-friendly analysis and mapping.
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Figure 14 The Suomi-NPP VIIRS linear latitude/longitude (or geographic) grid consists of 460 non-overlapping Land tiles which 

measure approximately 10° x 10° region. 30 VIIRS tiles (highlighted in red) were used to conduct the benchmark tests presented in 

Section 4. 
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